If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+130x-106.56=0
a = 4; b = 130; c = -106.56;
Δ = b2-4ac
Δ = 1302-4·4·(-106.56)
Δ = 18604.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(130)-\sqrt{18604.96}}{2*4}=\frac{-130-\sqrt{18604.96}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(130)+\sqrt{18604.96}}{2*4}=\frac{-130+\sqrt{18604.96}}{8} $
| x+6x=63 | | (3x-1)(3x-2)=101/(100)^2 | | 7x+5=21-2x | | 0.1x^2+11*x+100=0 | | U=t+14 | | 34=14+g | | 7(x-2)+3x=6 | | 7x-2+3x=6 | | 1/4x-7=11 | | 0=-8x^2-2x+3 | | 0=8x^2-2x+3 | | 0=1x^2-2x+3 | | 0=0x^2-2x+3 | | 0=-1x^2-2x+3 | | 5(p+3)-3(2p-3)=4 | | 1.28=x-52/13 | | 5+3x/10-2(x-1)/8=1 | | 4(3x+8)=2(x+29) | | 20+4*4*4÷(-8)=x | | 16-4x-1=25-16 | | 5(b-2=35 | | -4x^2-4x=(x-5)(-5x-3) | | 5x=3=2x-15 | | 5+3x-2(x-1)=1 | | 49x^2+28x-24=38x^2-4x | | 9x^2+6x+16=14x^2+19x+6 | | 0.3625=x+(1.625)*(x-0.10) | | 49x²-28x-24=38x^2-4x | | 4y-13=33 | | (7x-12)^2=(2x)(19x-2) | | 25x^2+20x+1=(x+2)(x+11) | | y=-X^3+2X^2+11X-2 |